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3.5 Linear Microwave Sources

3.51 Linear 1-Port Sources

Generators used in microwave engineering often deliver their energy via

dominant-mode waveguides. If the single-frequency, or at least spectrally

limited, signal generated here lies within the single-wave region of the dominant-

mode line, a one-port source can be associated with the generator junction

(cf. Section 3.3). In many cases, such a 1-port source can be approximated

with the model of a linear 1-port source. By this we mean a 1-port network

which is adequately described by one time-independent (sourceless) parameter

and one source variable which is independent of it; the sourceless parameter

and the source variable are themselves independent of the external circuitry,

i.e., independent of the variables of state in the reference plane defining

the 1-port network on the dominant-mode line.

In the following, we will limit our discussion to linear 1-port sources

with sinusoidal (time-wise) source variables, i.e., single-frequency

source variables whose frequencies lie within the domain of definition

of the 1-port network. If this source is now connected with a linear,

time-independent and sourceless 1-port network or an equivalent network, all

variables of state for the entire system are sinusoidal and of the same fre-

quency as the source variable, and can thus be represented by vectorial or

scalar components. The operating state of the source is now described by a

suitable pair of state variables in the reference plane, in the same manner

as for the sourceless 1-port network. The same conventions are assumed to

apply to the coordinate system and the reference structure as for the corres-

ponding 1-port network; in particular, the z-direction is taken to be positive

going into the junction in both cases. A. suitable pair of variables of
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state for describing the operating state of the linear 1-port source, for

example, are the vectors E , Etl in the reference plane z = 0. In

contrast to the linear time-independent and sourceless 1-port network, however,

the departing wave EI is now no longer proportional to the arriving wave

E-l (cf. Eq. (3.4/la)), but is a general linear function of two variables:

the arriving wave E 1 and a source wave E tQ independent of it, with the same

structure as E1 and Etl . We can then describe the operating state, for

example, with the equation of state

EC = r, E+ + E1t (3.5/I)

We break down the departing source wave EQ 1 at point z = 0, corresponding-tQl

to the vector quantities E . t, +0FF aG and

E_ =t1,,+Z b, , into its vectorial and scalar components

Etgi = t1 +V/p- bq1  (3.5/2)

and thus obtain the scalar equation of state from Eq. (3.5/1):

bi = ri al + bQl. (3.5/3)

We call the quantity rl the internal reflection factor, or reflection factor

for short, and bQ1 the departing source wave variable, or source wave or

original wave for short, of the linear 1-port source.

If the source is closed off with a suitable ideal absorber, then, in

accordance with Definition 11, departing wave E1 or al is zero, and the

departing wave is thus equivalent to the source wave E = E b = b--tl -tQl 1  Q1
Thus at the same time, we have a measurement rule for determining the

departing source wave. In this configuration, the effective power delivered

to the absorber by the source is

P; , j1 b, 12 - |bq, 1. (3.6/4)
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This is also the maximum deliverable or available effective power from a 1-port

source with rl = 0 (see also Section 4.25).

Like sourceless 1-port networks, 1-port sources can also be represented

in a different manner (cf. Fig.3/11). We obtain the voltage/current representation

from the special wave representation (Eq. (3.5/3)) if we express the port wave

variables a1 , b1 with port voltage u1 and port current il, using Eq. (2.5/13):

(u1 - ij) = ri (u, + ij) + bQj.

By solving for ul(il) and il(ul) respectively, we then obtain

I zi il + UQi (3.5/6a)

with

I + r (3.5/5b) and Q 1 2 bQ (3.5/5c)

or

, il =U Yl t 1 + iQ1 (3.5/6a)

with

S(3.5/b) and -2bQ (3.5/6c)
y l (3.5/6b) and = 1 + rL

Representations (3.5/5a) and (3.5/6a) have long been known,in the engineering

of concentrated circuits,as equations of state for the equivalent voltage

source and for the equivalent current source, respectively1 0 .

10The Equations for the equivalent voltage source and the equivalent current
source are often given in the literature in the so-called " generator notation,"
i.e. with the current-arrow direction opposite to that in PFi. 3/11, whilohore
"load notation" is used uniformly for all'n-port:networks. It should also be
pointed out that reduced state variables (Ul, i i , UQ1' iQ1) and normalized
operator vakiables (z 1, y1) are used here.
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1-port source Sourceless 1-port source Sourceless
1-port network 1-port network

Equations of state for the linear 1-port source

Scattering form bl = rlal + bQ1
Inverse scattering form al = Vl b + aQ1
Impedance form uI = zli + UQl
Conductance form ii = Y 1U 1 + iq1

Fig. 3/11. 1-port source and sourceless 1-port network represented in
two-terminal form with load metering"arrows. (a) Wave
representation, (b) voltage /current representation.

The time-independent parameters zland yl are internal impedance and internal

conductance, respectively, and the source variables uQ1 and iQl are the

source voltage or original voltage and the source current or original current,

respectively. Making use of these concepts, Butterweck [14] proposed the

name 'equivalent wave source" for the source represented by the wave representation

(3.5/3). It should be emphasized, however, that all three cases involve the

same linear 1-port source, which is merely described by three different

equations of state.

Characteristic parameters rl and bQ1 for the equivalent wave source are

obtained from the characteristic parameters zland uQl for the equivalent voltage

source or yland iQ1 for the equivalent current source by transforming Eqs.

(3.5/5a) and (3.5/6a) into the "scattering form" Eq. (3.5/3), with the aid of

4



Eq. (2.5/12). We obtain

Z, - 1 (3.5/7 a) and bQ1 = (3.5/7 b)

Yr _ (3.5/8a) and bQ i * (3.5/8b)
y + 1(3./8 Y1 + I-

In addition, the following relations exist between the characteristic parameters

for the voltage/current representation:

tQ1

There are three important special cases of the linear 1-port source:

If z1 = 0, then port voltage ul in Eq.(3.5/5a) is always equal to source

voltage uQ1 . In this case, the source is also known as a primary voltage source.

If y1 = 0, then port current il in Eq. (3.5/6a) is always equal to source

current iQ1. This case is called the primary current source. Making use of

these concepts, we then call the equivalent wave source the primary wave source

in the wave representation for the case r1 = 0; the departing port wave b1

is always equal to the source wave bQ1 here.

While the primary voltage source (zl= 0) and the primary current source

(y1 = 0) represent. limiting cases which are difficult to effect in microwave

engineering, the primary lead source (rl = 0) is easily realizable and is

usually striven for in the designing of practical microwave generators. When

we compare the three modes of representation, we recognize the formal superiority

of the wave representation in the scattering form, Eq. (3.5/3) : While the

limiting case zI = 0 cannot.be represented in the "equivalent current source"

conductance form (Eq. (3.5/6a)) and the limiting case yl = 0 cannot be represented
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in the "equivalent voltage source" impedance form (Eq. (3.5/5a)), all three

limiting cases z1 = 0, yl = 0, rl = 0, can be given in the scattering form,

Eq. (3.5/3). Only the special case zI = yl = -1, of no practical interest,

cannot be covered with the scattering form. However, this case can be described

in the wave representation by the inverse scattering form

al - vt bx + aQ (3.5/10a)

with

v, = ?1 (3.5/10b) and aQ, --rj 1 bqt (3.5/10c)

For zl = Y = -1, then, v1 = 0 and aQ1 = uQ1/2 = iQ1/2. The special case of

the primary wave source (r1 = 0, z1 = yl = -1) , the most important for

microwave engineering, has the equation of state

b, = bq "" (3.5/11 a)

in the scattering form, and the equations of state

u1 = il + uQI (3.5/11b)
i1 =. u + iQ. (3.5/11e)

in the impedance and conductance forms, respectively. Here, too, a comparison of

the three Eqs. (3.5/11) indicates the advantage of the wave representation over

the voltage/current representations.
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3.52 General Linear n-Port Sources

If a single-frequency microwave generator to which a linear 1-port

source can be assigned is connected with a suitable waveguide junction which

can be considered a linear, time-independent and sourceless (n+l)-port network

a system involving a source is generally obtained again which we can desig-.

nate as a linear n-port source. We assume for the present that such a lin-

ear n-port source can be described in the wave representation by the scattering

form b
form bi 11 812... 8 1k . al b

b2 S21 822 a2 bQ2

bl Sk1 Skk k bQk (3.5/12a)

bn Sni bnn an bQ

or, abbreviated,

B =S A + IQ (3.5/12b)
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Here, A and B are the vectors, already explained in Section 3.42, for the arriving

and departing waves, respectively, in the reference planes of the n-port network;

S is the scattering matrix for the n-port source. The quantity

bQt

bQ2

Bq = (3.5/13)

ban

is the vector -- independent of A and B -- for the departing source wave values

bQk. The n components bQk here are all components of the same frequency, and

are locked in phase with one another. Their individual amplitudes (peak values)

lbQk [ and phases arc (bQk) are established by the interconnection of the

1-port source and the (n+l)-port network. In special cases, one or more source

waves can vanish. However, we always speak of an n-port source,if, for

n ports, not all components of column vector B are identically equal to zero
-Q

in the domain of definition of the'n-port network.

We can now disregard the special interconnection considered above and

generally designate generator junctions with the previously discussed properties

as linear n-port sources if they can be described by the equations of state

(3.5/12) or an appropriate equivalent form (cf. Table 7). In the following, we

always assume here that all source parameters derive from the same physical

single-frequency generation mechanism and are therefore of the same frequency;

it is not necessary, however, that the "primary generator" be physically

separable as its own junction (1-port source). Examples of such n-port

gate sources with inseparable 1-port sources in microwave engineering include
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1-waveguide generators which are accessible via non-dominant-mode lines (e.g.

circular waveguides) or, generally, those which generate oscillations with a

frequency above the second-lowest cutoff frequency of the waveguide, and,

generally, all N-waveguide generators (N > 1).

Table 7

General linear n-port gate source in four representations and
conversions of the characteristic parameters

of the n-port source

A0 ellenDaorstellungen Spannuge/Strom-Darttellunigein

C
BI-Quelle A-Quelle fu-Quelle i-Qule

- S = V
-  = (z + E)-

1 
(z-E) -(y + E)-1 (y - E)

S= SA + Q

S1 Blq = -V-IAQ BQ = (z + E)-
1 1Q Bq --(1+ E)

- 1 
i

V V= S
- 1 V=(z-E)-1 (=+E) V = -(U--E)-1 (U+E)

A = VB+AQ
A AQ= -S-1BQ AQ= (Z-E)-1 Q AQ= -(y-E)-tiQ

x_ z= (E--S)-I(E+- S) z= -(E--V)-1(E+V) z -1

e = zi + *IQ
a uQ fq 2 (E - S)-IBQ Bq = 2 (EI- I Q)-lIq Q = - U-' IQ

y y=(E+S)-I(i -S) y= -(E+ V)-1 (E- V) U =

= yu+ iQ
iQ = -2 (E +S)-llo IQ- 2 (E V)-lA Q iQ -- I

1
A

Key: a. Wave representations
b. Voltage/current representations
c. Source
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If the n-port source is closed off with suitable absorbers, then, in

accordance with Definition 11, all n waves ak arriving at the source are zero,

and thus each departing wave bk is equivalent to the corresponding source wave:

bk = bQk. This is again a measurement rule for determining source waves. We

obtain the total real power delivered to all absorbers from the n-port source

here by calculating the transported power for each departing wave and then summing

thesell:

n n n

Y, Yk C " Ibkid2  Z I (3.5114 a)
k=1 k=I k=I

We can also write the last summation as the scalar product (row times column)

of the source wave column vector, thereby obtaining:

bqI

bQ2

P- = (bQb . . .bi) " B ' B4 . (3.5/14 b)

This is at the same time the total power which the the n-port source deliv-

ers to a sourceless n-port network if the scattering matrix of the source is

equivalent to the null matrix (cf. Section 4.64).

Making use of the designations used with the sourceless n-port network, we

likewise wish to call the coefficients skZ of the scattering matrix for

the n-port source reflection coefficients (for k = t) or transmission coefficients

(for k £). However, they cannot be determined in the same straightforward

11 Even if several wave types exist in a waveguide, the total transported power
is obtained as the summation of individual powers, due to the orthogonality
of the individual structure functions (cf. Section 2.33 and Section 3.2).
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manner as in the case of the sourceless n-port network. We shall not cover the

possible methods for determining the skl experimentally until Section 4.75.

If the n-port source is associated with a generator junction of N

waveguides, the state-variable vectors A, B and B and, correspondingly, the
-Q

scattering matrix can be broken down into N groups assigned to the individual

waveguides just as in the case of the sourceless n-port network. The overall

scattering matrix then contains N2 submatrices: Nreflection matrices SKK and

N2 - N transmission matrices SKL (K 0 L). If all transmission matrices SKL

(K / L) are null matrices, then the N waveguide connections are uncoupled. If

all transmission coefficients skZ (k 4) are zero, the n-port source breaks

down into n mutually independent 1-port sources; finally, if all scattering

coefficients are zero, we are dealing with n mutually independent 1-port primary

wave sources 12 .

Just as the 1-port source can, an n-port source in the wave representa-

tion can also be described formally by the inverse scattering form

A I' iB + Ao (3.5/15)

with the inverse scattering matrix V = S 1 , as well as by the scattering form,

if S is not singular. A is the column vector for the arriving source waves

here. In addition, equations of state for the n-port source

u = Zi + uQ (3.5/10)

and
i = yu + iQ (3.5/t7)

12 In the special case in which all skk = 0 (k Z ), i.e. n independent 1-

port sources, the conditions of equal frequency for the source waves can be
eliminated. When the frequencies of the n 1-port sources are different,
it is then necessary, for example, to carry out power calculations n times
and add the results.
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can be set up as an extension of equations (3.5/5a) and (3.5/6a) in the voltage/

current representation. Here, u and iQ are the column vectors for the source

voltages and source currents, respectively; the remaining column vectors and

matrices have the same meaning as for sourceless n-port networks in the Voltage/

current representation. In Table 7, which itself is laid out on a matrix scheme,

we find the four representations of the general linear n-port source-in the

heavily outlined principal diagonal fields and, in the secondary diagonal fields,

the characteristic parameters'of a mode of representation expressed by means of

the characteristic parameters of another mode of representation.

4.133 Switching Group With Rotational Transformation

In addition to the two previously treated cases without type mixing, there

also exists the case of a compatible combination with the mixing of directionally

degenerate types in special rotationally symmetrical waveguides. We wish to

study the coupling relations which apply here, using a simple but practically

important example, and therefore consider a compatible combination via a pair

of circular waveguides in the two-wave range as shown in Fig. 4/12.

In accordance with Section 3.81 and Fig. 4/12a, let port 1' be assigned to

the H1 wave with reference structure BS1, and port 2' to the H 11 wave with

reference structure BS2, in reference plane BE , and, correspondingly, port 1"

to the H wave with BS1",, and port 2" to the HI1 wave with BS2 in reference
to the 11

plane BE ,,. The reference axes BA , and BA ,, of the two reference planes are

not parallel or antiparallel now, however, as in the cases covered above; rather,

they are oriented so that they enclose angle 8 as shown in Fig. 4/12b. Due to
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this rotation of the reference axes and thus of the reference structures, a de-

parting HI1 wave (port 1') in reference BE , will produce both an arriving H11

wave (port 1") and a departing Hs1 wave (port 2") in reference plane BEy,,.

-- ! ' e
BE; B

; DS"

'I~a as; as

as BAs
SH BAH (a) BA' BA, (b)

DA,

(a) Waveguides with rotated Co) Coordinate system
reference structure and reference

structure

BE 0 BE;

2' O' 2"

Ic)

(c) Equivalent circuit diagram

Fig. 4/12. Example of a connection with type mixing.

In order to derive the coupling relations, we compile the expressions for

the transverse electric fields of all arriving and departing H11 waves in BE ,

(z, = 0) and BE ,, (z,, = 0), respectively. We obtain

Et' (zv,'= 0) = tt' vr1T' bl', (4.1/22b)

Ej' (Z,' = 0) = t' - ', .(4.1/22b)

Et' (z,' = 0) = t' Y4 2 ' (4.1/22d)
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and Et" (z"' 0) = " V,' a", (4.1/23 )

E" ( '" = 0) = t2 " VZIF2" b 2 ". (4.1/23d)

When they are combined, i.e., if the two reference planes coincide (z , I -zV,,),

we must then equate the superposition of the two departing waves in BE ,, to

superposition of the two arriving waves in BE ,:

Ei1" (z," = 0) + ) O) E ' (z ' = 0). (4.1/24a)'

Correspondingly, we obtain the following for the opposite direction:

Egj' (zc' = 0) + E 0) (z," -( 0). (4.1/24b)

Due to the degeneration of the H1 and Hs1 waves, and since both waveguides

form a compatible pair, we obtain

Zt11' = ZF2' = Z1 = ZF2". (4.1/25)

If we now substitute Eqs. (4.1/22) and (4.1/23) into the vectorial coupling

relations (4.1/24), taking Eq. (4.1/25) into consideration, we obtain

till b'" + tz" b2" - ti' al' + te' a2 ' (4.1/26a)

t' bl' + t2' b2' = ti" a" + t 2" a2". (4.1/26 b)

Both structure functions t ,,t2 , and structure functions tl,,,t 2,, each form

an orthogonal pair with the same eigenvalue. According to Section 2.33, we can

convert one pair into the other pair by means of an orthogonal transformation,

for example

14



ft'\ {n 1012) /tl"\

\t2') \ol o 022 t2 " (4.1/27a)

If we now express functions tl, and t2, in Eq. (4.1/26a) with tl,, and t21,, .with

the aid of transformation (4.1/27a), we obtain

ti" bi" + t2" b2
1" = (oil tl" + 012 t2") a1' + (o2 1 tl" + 02o t 2 ") a2'

or, after collecting the coefficients of the same structure functions,

tl" bL" + t 2 " b 2 " = tl" (o01 au' -I- o021 ") + t2" (o12 at' -I- o22 aI')

Since tl,, is orthogonal to t2",, it thus follows that

bi" = 011 a' + 021 as' (4.1/28a)

b2" = 012 al' + 022 a 2 '. (4.1/28 b)

We thus have a set of scalar coupling relations for connecting ports 1',2' with

ports 1",2".

The transformation matrix in Eq. (4.1/27a) we call o. Since it is orthogonal,

-l T
o = o . We can now solve Eq. (4.1/27a) very easily with

2"= 012 022 2
t2" 012 022 (4.1/27 b)

and thereby express structure functions tl,,,t 2,, with tl,,t 2, in Eq. (4.1/26b).

In a corresponding manner, we then obtain the other set of scalar coupling rela-

tions with

bl' = ol al" + 012 a2", (4.1/29 a)

b2' = 021 al" + 022 a2" (4.1/2 b)

We can easily see, by comparison with coupling relations set up earlier,

that the switching group matrices are in this case equivalent to the transformation

T
matrix o or its transpose o .
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The coefficients of the transformation matrix can be determined in the

following manner. The known structure functions for the HeI and HIs waves in

BE , and BE ,, (e.g. as in Table 2) are substituted into the transformation

equation, e.g. (4.1/27a). The right and left sides of Eq. (4.1/27a) can be com-

pared component-wise after the coordinate transformation

" = - (q' + 0)

By comparing coefficients we then obtain

o11 =cos0, 012 = -sin0,

o2i =- sin 0, 022 - cos0.

Thus transformation matrix o is symmetrical, i.e., o = o . Since it is also

-1 T -1
orthogonal (o o ), we also have o = o.

We again collect the arriving-and departing-wave parameters for ports 1',

2' and 1",2" to form column vectors A',B' and A",B", respectively, and in place

of Eqs. (4.1/29) and (4.1/28) we write

11' = GgV,") A", (4.1/30a)

B" = G(",') A' (4.1/30b)

with the switching group matrices

GC.'") - G'.) ( cos 0 -sin 0\(4.1/31)

0 -sin 0 -cos0

The subscript o is meant to indicate that these switching group matrices

characterize a connection with type'mixing with respect to an orthogonal
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transformation. For the special angles of rotation 6 = 00 and 1800, only ports 1'

and 1", and 2' and 2", respectively, are connected together; the switching group

matrices are then diagonal and characterize a pure interchange of signs (cf.

Eqs. (4.1/12) through (4.1/15)). If angle 8 is 900 or 2700, port 1' is only

connected with port 2" and port 2' only with port 1"; this is then a special

case of an interchange of port numbers. In general, the connection is represented

by the equivalent circuit diagram shown in Fig. 4/12c.

If a compatible combination is produced via a circular waveguide pair with

twisted reference axes and with more than just the two H11 waves, the switching

group matrices can be easily generalized with the aid of the example discussed.

The directionally degenerate wave types are then coupled via Eq. (4.1/31) to

analogous, orthogonal submatrices which are arranged along the principal diagonals

of the switching group matrices, corresponding to port numbering. Of course,

this method can also be applied in a corresponding manner to coaxial-line

connections in the multiple-wave range.

4.134 General Properties of the Switching Group Matrices

In a general compatible combination of two junctions or networks, the three

interchange operations which have been considered separately till now can occur

in combination. Connection of the two port groups TG' and TG" of m ports each

can then be described by suitable switching group matrices whose properties we

now wish to derive from generally valid laws governing connection. We first

collect the two switching matrix equations (4.1/16a,b) or (4.1/19a,b) or

(4.1/30a,b) to form one matrix equation

.(1 G(')) Ai,) (4.1/32 a)\

and abbreviate it with

B = Ts A (4.1/32b)
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Column vectors A and B are column vectors for the arriving and departing waves,

respectively, with respect to junctions V' and V". However, we can also conceive

of the "switching point," i.e. the totality of reference planes which coincide

in the combination, as a proper "switching" junction to which a 2m-port network can

be assignea. Relative to this 2m-port network, A is then the column vector for

departing and B the vector for arriving waves. If we invert Eq. (4.1/32b)

-lA=T- B
-s -

-1
and substitute A = B ,B = A and T-  S we obtain

- - -s --s -S

B S = S S (4.1/33)

the equation of state for the 2m-port network in customary scattering form.

We can now characterize the properties of the 2m-port network by means of the

2m-row scattering matrix

(s1 S12) (4.1/34)

with m-row submatrices S.ij using the known criteria in Section 3.6.

Due to the compatibility of the combination and the definition of switching

junctions, the 2m-port network has the following characteristics:

1. The m ports of port group TG' are not coupled with one another;

for this reason,

S = 0. (4.1/35a)-11

18



The m ports in port group TG" are likewise not coupled with one another;

for this reason,

22= 0. (4.1/35b)

2. The 2m-port network is reciprocal; i.e., its scattering matrix

S is symmetrical. Thus

S = ST (4.1/35c)

and therefore

T21 = S2 (4.1/36d)

Characterization with one transmission matrix, e.g. S12 , is thus sufficient.

3. Since the switching junction has no spatial dimensions, transmission

from ports in port group TG' to ports in port group TG" and vice versa

occurs without phase displacement. Transmission matrix S is therefore-12

real,

S12 = 12 (4.1/35e)

and, due to Eqs. (4.1/35a,b), scattering matrix S is also real,

s = S' (4.1/35f)

4.The 2m-port network is'neutral; i.e. its scattering matrix SS is unitary,

*TS S = E. (4.1/35g)
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From Eqs. (4.1/35g), (4.1/35f) and (4.1/35c), taken together, it then follows

that

S S = E (4.1/35h)
or

-1

The scattering matrix is thus involutory, i.e., equal to its inverse.

Since we had introduced scattering matrix SS as the inverse of transformation

matrix Ts we thus also have

is = S (4.1/36)

This means that all properties of SS defined by Eq. (4.1/35) also apply to TS.

In particular,

G( ' Sl2 and G ' = S
- -12 - -21

and, from Eq. (4.1/35d),

= G( . (4.1/37)

Connection of the two port groups TG' and TG" to form one switching group

is thus adequately characterized by one switching group matrix G. We write

(4.1/38a)

and /G(".')= G, (4.1/38b)

and then obtain
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and, in place of Eq. (4.1/32a),

We wish to call matrix T the transformation matrix for calculating connec-

tions in the scattering form. The connection is described here by equation of

state (4.1/40). From Eqs. (4.1/36) and (4.1/35), switching group matrix G is

real and orthogonal, i.e.,

G* = G, (4.1/41 a)

-1 c= GT. (4./41 b)

If junctions V' and V" are characterized by wave "chain" matrixes, and if

the connection of port groups TG' and TG" is to be calculated in the cascade

form, then coupling relations of the form

and A (B")
B' (A")

are necessary for this purpose. From Eq. (4.1/40), we obtain

(B "o O A)

by rearrangement and inversion. By interchanging the operations of transposition

and inversion and using Eq. (4.1/41b), we obtain (GT)-  = G-)T = (GT) T = G,

and from this the equation.of state for the connection in the cascade form
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\11 ( 0o ) (11).A' (4.1/42)

The matrix'

c 0 G (4.1/43)

we call the transformation matrix for calculating connections in the cascade

form.

4.22 Transformation ofa I-Port Source

We next study the transformation of a 1-port source by a sourceless 2-portnet-

work, and for this purpose we open the network in Fig. 4/15 at switching point

2,2'. Let the original 1-port source with port 1' be described by equation

of state

bl' = rl, al, + bQ,. (4.2/8)

At switching point 1,1', the parameters of state are coupled by the switching

equations

bi = Pu1' al', (4.2/ a)

bl' = prl.,x t (4.2/9b)

In addition, we again have the equations of state (4.2/1) for the 2-port net-

work at our disposal. Thie.i-port 'source resulting from the connection, as shown

in Fig. 4/17, with available port.2, is assumed to be described by the equation
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of state

b2 = r 2 a2 + bQ2. (4.2/10)

The (internal) reflection factor r2 and source wave bq2 from the tranformed

source or equivalent wave source must now be determined with the aid of Eqs.

(4.2/1), (4.2/8) and (4.2/9). For this purpose, we replace the parameters of

state al,,bl, for port 1' in Eq. (4.2/8) with the parameters of state al,b 1 for

port 1, using switching equations (4.2/9), and solve for b1:

- -- r'- L pit' bQ"

We thereby eliminate bI in 2-port network equation (4.2/la) and solve for al:

"1 (I'- 1  -- 811) 1  a2  - (r '-' - Y11)-1 r'- 1 p11' bQi'.

If we now substitute this result in2-port network equation (4.2/lb) and factor

out a2 , we obtain

bz = [822 + 21 (rl'-  -- 811a)-i e12] a2 + 821 (rl'-1 - sii)-1 r pi' b'Qi.
(4.2/11 a)

By comparison with Eq. (4.2/10), we then find

r2 = 822 + 821 (r'-' - s11)-1 12 (4.2/11 b)

for the transformed (internal) reflection factor and

b a 8 21 (rl'-1 - 811)-i rl'-1 Pu' bQl'. (4.2/11 c)
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for the transformed source wave.

This result is interesting in two regards:

The reflection factor given in Eq. (4.2/5b) for a transformed, sourceless 1-

port networkis, as can be seen by comparison with Eq. (4.2/11b), formally'identi-

cal to the reflection factor for a transformed 1-port source. Thus the trans-

formation of a sourceless 1-port network is included in the more general

transformation of a 1-port source as the special case in which bQ = 0.

We also see that the reference-arrow reversal at the switching point involved

with an interchange of signs as determined by polarity parameter p V, only has

an effect on the transformation of the parameters of state in this case, e.g.

on the source wave, for example, but not on the transformation of the operator

parameters, such as the reflection factor in this case.

1 2

b2-.- b---

Fig. 4/17. Connection of a 1-port source with a
sourceless 2-port network, and equivalent
1-port source.

For practical application, we suitably transform relationships (4.2/11b,c)

and write the following: rl, = ril, r2 = ri2 and bQ' = bQ1; then

b2 = r12 a2 + bQ2 (4.2/12a)

with 12 822 821 812 (4.2/12 b)
1 -- 011 fit

and bQ2 821 pn bQl. (4.2/120)
241 - rn
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If the original source is a primary wave source, i.e. ril = 0 , then

r12 " 822

and bQ2 821 VnI' bQl.

If the transforming 2-port network is an ideal loss-free line, i.e. sil = s22 = 0

and sl2 = s 2 1 = exp(-jOS), then

and12 
= e-Pl ni

and bQ2 = 0 - P 11' bQl.

The transformation thus become particularly simple if the product Sll ril

disappears in the numerator of Eqs. (4.2/12b,c). This is obviously the case

if either the original source (ril = 0) and/or the port connected to the source

(S11 = 0) are matched.

4.23 Chain Configurations of 2-Port Networks

If two or more 2-port networks are put in a chain as shown in Fig. 4/18 or

4/19, a 2-port network again exists. We now consider the problem of determining

the characteristic parameters of the resultant 2-port network from the parameters

from the individual 2-port units. This task can be treated in the wave represen-

tation both in the scattering form and in the chain form.

We first study the connection of two 2-port networks as in Fig. 4/18 in

the scattering form, and base our discussion on the general case in which the

2-port network with ports 1 and 2 represents a.2-port source which can be

described with the equations of state

b1 = s 1 j +,s1 as+ bQ,, (4.2/13a)
b2 = s21 ,tl + s2 a2 + bQe (4.2/13b)



The other 2-port network is assumed sourceless and is described by the equations

of state

b 3 = s (1 a + S34 ( 4 , (4. 2 /14a)
b4 = 81 13s + 844 (14 (4.2/14b)

Ports 2 and 3 are joined when the connection is made as shown in Fig. 4/18;

ports 1 and 4 form the port of the resulting 2-port network, which then generally

again represents a 2-port source. To describe the chain combination in the

scattering form, it is desirable to consider the two unconnected 2-port networks

together as a 4-port network to collect ports 1 and 4 in one group and ports

2 and 3 in another group. With this breakdown, we then obtain the following

from Eqs. (4.2/13) and (4.2/14) as the equation of state for the 4-port network

b\ s11 0 sa 0 \ /bol

b4 a 844 0 84311 a 10 (4.2/15a).1=. ........... ..... ..... .1 a+)
S 821 0 822 0 a2 bQ2Ib3) 0 s834 0 83 a3 0

or, with the subvectors

DI = Q1 = 1 1 (0 Q)

and the submatrices

S11  (S1 0) 8 12 43

( '9 34) S22 '933)

in abbreviated notation,
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IIt S 1 1 A1 + S 1 2 |+ B Q1, (4.2/15 b)

Bl2  S21 1t +$ SA 2 + 3 Q2.

The connecting of ports 2 and 3 can be described, on the basis of Eqs. (4.1/39)

and (4.1/40), by the equation

12 = TS A2 (4.2/16)

with the tranformation matrix

Ts2 ' ( 0 (4.2/17)

The polarity parameters p23 = P32 are either +1 here if the reference arrows

for ports 2 and 3 are in the same direction -- as shown in Fig. 4/18 -- or -1

if the reference arrows are in opposite directions.

1 3 

-bl - -- b, b-

Fig. 4/18. Diagram for calculating the scattering
matrix of a chain of two 2-port networks

The parameters of state for ports 2 and 3, which are to be connected, i.e.

subvectors A2 and B2, must now be eliminated again and system of equations

(4.2/15) solved for B(A, B BQ2). Similarly to the method applied in Section

4.21, we thus replace B2 in the second line of Eq. (4.2/15b) with A2, using

switching equation (4.2/16), and solve for A2

Ag q (Ts - S 22)-1 S21 A, + (Ts - S22)- 1 II Q2
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We then substitute this expression into the first line of Eq. (4.2/15b) and

obtain

11 = [S + S12 (Ts - S22) 1 .S21] A, + S12 (s - 822)- BQ2 + BQ1
(4.2/18.)

or

f1) = S' A, + BQ'. (4.2/18b)

The scattering matrix S' for the resultant 2-port source here is

S' 1 1 + S12(Ts - S 22)- 821 (4.2/10a)

and, after inserting the submatrices and multiplying out,

( q1 2 821 833 P23 8,2 834
1 -- 8 ,2 33 822 833

S'82= . (4.2/19 b)
P23 -43 821 + 43 834 822
I - s~z - 1 - a2 83as3

For the source wave column vector B ,, we obtain

BQ' 1= S (ls - S 22)- 1 BQ2 + BQl (4.2/20a)

or

Ib'\ 812 833 - + bQl

If the 2-port network with ports 1, 2 is sourceless, then bQ1 = bQ2 = 0, and

thus = 0. The scattering matrix for the resultant sourceless 2-port network

is then likewise determined by Eq. (4.2/19).

Another special case is also included in this computation, namely that

of a 2-port source with a load on one side at port 2: We then consider s

r2A to be the initial reflection factor and, with s43 = 0, s34 = 0, obtain
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the characteristic values for the resultant 1-port source from the coefficients

in Eq. (4.2/19b) or (4.2/20b) which then remain.

According to Eq. (4.2/19), the scattering matrix for the resultant 2-port net-

work generally becomes quite simple when the reflection coefficients s22 and

s33 for the connected ports vanish. If the original 2-port networks are matched at

all ports, i.e., sll = s22 = s33 = s44 = 0, then the resultant 2-portnetwork is

also matched at both ports, i.e. S11 , = s44' = 0. If the original 2-port networks

are reciprocal, then the resultant 2-port network is also reciprocal.

The scattering-form computational method used to characterize the chain

coupling of two 2-port networks can be extended in a corresponding manner to

chain configurations of more than two such networks. In many cases, particularly

if all 2-port networks are sourceless, it is more advantageous to carry out the

calculations in a chain form, however. We now consider a chain of q sourceless2-

port networks as shown in Fig. 4/19. The individual 2-port networks are assumed

to be characterized by their wave chain matrices C in accordance with Eq. (3.4/24),

as defined in Section 3.44.

'b, b'-b,., b'.

-- o, a'-- -*aw.1 a

Fig. 4/19. Diagram for calculating the wave chain matrix
for a chain of q 2-port networks

We first single out two neighboring 2-port networksv,v+l from the overall

chain; these are assumed to be described by the equations of state

29(4.221)
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and (b) == b+ (4.2/22)
a.ve) 1

The connecting of port v' and port v+l can be represented, according to Eq. (4.1/42),

by

vy) = To, (4.2/23)

with transformation matrix

T 7 1( (4.2/24).

Here, p ,,v+l is the polarity parameter for the port connection. By combining

Eqs. (4.2/21) and (4.2/22) with the aid of switching equation (4.2/23), we

obtain the equation of state for the two-member chain as

\av =CV TO v CV. b+1')' (4.2/25)

Similarly, we obtain the following for the chain of q 2-port networks

b) = Ci Tci C2 TC2 ... Cv Tc, . . C Tcq- C (-1 q ) (4.2/20)

Since the transformation matrix, according to Eq. (4.2/24), is a scalar matrix

in this case, it can be separated out of the matrix product. For the wave chain

matrix C for the q-member 2-port network chain we then obtain

v-1

The product over the polarity parameters is either +1 or -1. If all

individual 2-port networks are equivalent to one another, the, product over the
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chain matrices is equal to the qth power of Cq, which can easily be determined,

for example, by diagonalization ([B3], [B4]).

4.62 Connecting Two General Subnetworks in a Chain

As shown in Fig. 4/54, we now break the microwave network down into sub-

network N , with port groups TG1 and TG2, and subnetwork N, with port groups

TG3 and TG4.  Port group TG1 contains n ports; port group TG4, P ports; and

port groups TG2 and TG3 each contain m ports which are assumed to form a com-

patible switching group SG.

0 N, E-H -- S - T-S 1111
(n Tore) (m Tore) (m Tore) (p Tore)

-B,, -82 c- B34
A A2 - A4

Fig. 4/54. Chain coupling of two subnetworks N and N

Key: Tore = ports

Subnetwork Na is again assumed to be represented generally by an

(n+m)-port source with the equations of state (4.6/1)

Bj = S11 AS + A + 2 +BQI,
B2 - S21 A.1 + S22 A2 + BQ2
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Subnetwork Ng in general represents an (m+p)-port source which is

assumed to be described by the equations of state

B3 = Sa3 A 3 + S3 4 A 4 + BQ3, (4.6/6a)

B 4 = S 4t3 A 3 + S 44 1A4 + BQ4  (4.6/6b)

Here, S3 is an mxm submatrix, and S44 is a pxp submatrix. The generally rec-

tangular submatrices S4 and S43 have m rows and p columns, and p rows and m

columns, respectively.

Let switching group SG, made up of portgroups TG2 of Na and TG3 of N ,again

be characterized by switching equation (4.6/ 3). Port groups TG2 and TG3 are

saturated by connecting the two subnetworks; the resulting network, as a generalized

chain configuration of the two subnetworks, is accessible via port groups TG1 and

TG
4 •

In order to make calculations for this general chain, we mix the equations

of state (4.6/1) and (4.6/6) for the two separate subnetworks, whereby the column

vectors of state for the resultant port groups TG1 and TG4 or port groups TG2

and TG3, to be connected together, are collected in new column vectors as

shown in the following scheme:

H1  S1 1 0 S12 0 \ /111 l1Q1

S 2 0 S 43  A2 BQ1SS 0 S , A B (46/7)
113 0 SM 0 S 3 )

With the abbreviations
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and S11 0 ( 4./ ,)) (S 1 2  0 ), (4.6/8h

( h ) (4.6/Si), , S 22 A (4.6/8j)

s = S (0 IS334

we then obtain the following in place of Eq. (4.6/7):

B Sxx, Ax + Sxy IAy + RQx, (4.6/9a)

By Syx- Ax A+ Syy Al + IIVy. (4.6/9b)

With abbreviations (4.6/8d) and (4.6/8e), we can express switching equations

(4.6/3) with the transformation equation

By = 'Ts.'3 y (4.0/10)

in which transformation matrix TS from Eq. (4.1/39)

is made up of switching group matrix G and an mxm null matrix.

As determined by the numbers of rows and columns of the submatrices, S-xx

is an (n+p)x(n+p) matrix, and S and T are 2mx2m matrices. The generally rec-

tangular matrices S and S have (n+p) rows and 2m columns, and 2m rows and
-xy -yx

(n+p) columns, respectively.

Again the problem arises of eliminating the column vectors of state for the

connecting port groups TG2 and TG3, i.e. the column vectors A and B . We first

substitute Eq. (4.6/10) into Eq. (4.6/9b) and solve for A :
--y

Ay = (Ts--- ) Syx x -I- (Ts - SVy)-1 BQy.
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We next substitute A into Eq. (4.6/9a) and, after factoring out A , we obtain-y

Bx IS Sxx + Sxy (Ts - Syy)-1 SYx] AX + Sxy (Ts - S)-' BQO + I1Qx
S"(4.0/11 a)

or, abbreviated

Bx - 5 Ax + NQ. (4.6/11b)

Here, scattering matrix S for the chain configuration of the two subnetworks is

given by

S= Sxx + Sxy (Ts - Sn,)-' Syx (4.6/12a)

and the resultant source wave column vector B by

IQ = BQx + Sxy (Ts - Sy,)-1 BQI (4.6/12b)

We write the inverse I of the 2mx2m "supermatrix" T - S in the form- -S -yy

(Ts - SV) -I = (GT22 -S 3 3 ) = 121 122)' (4.6/13)

If we invert the supermatrix, we obtain the following for mxm submatrices I :

11 = G 33 (G - S22 G S 33)
-1 , (4.6/14a)

112 = (G'T 7 33 GT S22)-1, (4.6/14b)

121 = (G - S2 2 G S33)-1 (4.6/14c)

122 = GT $22 (GT - S3 3 G
T S22 )-' (4.6/14d)

Due to the orthogonality 'of the switching group matrix, these inversions become

particularly simple if one of the two inherent reflection matrices S or 3- 22 r33

is a null matrix.
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We now designate the resultant scattering: matrix S and source wave vector

BQ, on the basis of gate groups TG1 and TG4, through which the resultant network

is accessible, as

= (4.6/15a) and BQ = / (4.6/15b)

With the aid of Eqs. (4.6/8), (4.6/13), (4.6/14), we then obtain the following

froms Eqs. (4.6/12) for the submatrices defined by Eq. (4.6/15a) for the resultant

network:

S-- S11 + S12 . S33(G - S2 C S33)-'
1 S (421/16a)

914= S12 (GT - S 3 3 QT S 22)- 1 534, .(4.6/1b)

S41 S $ 43 (G - S 2 2 G S 3 3 )- 1 
S 2 1 , (4.6/1c)

544 = 8 44 + S43 GT S 2 2 (GT - S33 G T S2 2 )- (./1d)

and the following for the source wave subvectors defined by Eq. (4.6/15b):

SkQi = nlQ + S12G S33 (G - S 2 2 G S 3 3 )-' BQ2 +

+ S 1 2 (G' - S33 GT S 2 2 )- 1 BQ3, (4.6/16c)

7EQ4 = BQ4 + 43 G T S 2 2 (GT - S33 G T 22'-1 BQ3 +

+ S,3 ( - S22 G S 33)-1 BQ2. (4.6/lf)

The transformation problem treated in Section 4.61 is included directly -- with

the selected symbols and port-number assignments to the different port groups --

as a special case in this second approach. If we close port group TG4 at all

ports without reflection, subnetwork N8 degenerates to a single-port-group net-

work with port group TG3 , which is characterized by S33 and Q3 alone. If we

now equate SG with S33 and -1 with "11' Eq. (4.6/16a) is converted into

(4.6/Sa,c) and (4.6/16e) into (4.6/5b,d).
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On the other hand, the chain configurations covered here can also be con-

ceived of as a special case of a general transformation as described in Section

4.61: port group TG4 is transformed via a partial subnetwork of N which acts

as a through connection, into a partial port group of TG . The six equations

(4.6/16) are then obtained from Eq. (4.6/5) if the matrices used herein are

conceived of as supermatrices which are built up in a suitable manner from the

submatrices for the two networks as shown in Fig. 4/54 and the "through

connection."

4.63 Chains of Sourceless 2n-Port Ports Symmetrical with Respect to
Port Numbers

If a sourceless network can be broken down into two subnetworks N and N

with two port groups each in such a manner that all port groups have the same

number of ports and a port group in Na and a port group in Na form a compatible

switching group, then the chain configuration of both subnetworks can be com-

puted in the wave chain form. It is assumed here that a corresponding wave

chain matrix which is suitable for switching calculations can be set up for

every subnetwork (cf. Section 3.44).

We now consider the network broken down as in Fig. 4/54 and assume that

every port group consists of n ports (m = p = n). Let each subnetwork be

represented by a sourceless 2n-port systemln the wave chain form, subnetwork

N is described by the equation of state

and subnetwork N8 by equation of state
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G13 -. .-44) (B4)"

Port groups TG2 and TG3 are assumed to form a compatible switching group

which is characterized by switching group matrix G. The connecting of the two

port groups can then be described on the basis of Eq. (4.1/42) in the cascade

form by the transformation

12 (4.6/19)

Under the above assumptions, all column subvectors in Eqs. (4.6/17) through

(4.6/19) have n rows, and all submatrices are nxn.

The equation of state for the two subnetworks connected in .a chain can now

be determined very easily by the step-wise elimination of the vectors of state

for port groups TG2 and TG3 with the aid of transformation (4.6/19): In Eq.

(4.6/17), we express the last column supervector with Eq. (4.6/19), and in

the latter we express the last supervector with Eq. (4.6/18), obtaining

(1) -(Cu C2\ 0) (C43 C34) (A 4  (4..6/20a)

or, after multiplying oit,

(l1 11 ( C33 + C1 G C43 C 11 C ,1 + C12 G .1,1) A4

A I C21 C +- C6223 G..43 21 G C 3 1 4- C 2 2 (G C 4 1 tB4

(4.6/20 b)

This method of computation can be extended in a corresponding manner to

chains of several subnetworks'which can be represented with sourceless 2n-port net-

works of equal port numbers, symmetrical with respect to port number. If we

designate their 2n-rowed wave chain matrices as C and the transformation matrices-v

for the switching groups from Eq. (4.1/43) as TCv, we obtain the following as
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an extension of Eq. (4.6/20a) for the equation of state of a q-member chain:

ia) = ' C, Tci C2 T2.. .• C, I'e.... q- ''eq-1 Cq (4.6/21 a)

or

1B) - V Cv iTc q (4.6/21b)

This computational method is of course particularly advantageous when

chains of subnetworks of the same type are involved (cf. Section 4.52).


